武汉百士自动化设备有限公司

主营业务:力士乐REXROTH,安沃驰AVENTICS,爱尔泰克AIRTEC,迪普马DUPLOMATIC,世格ASCO,阿托斯ATOS,本特利Bently

联系商家
ATOS阿托斯比例阀RZMO-P1-010/210 20

ATOS阿托斯比例阀RZMO-P1-010/210 20

价格 面议 起订量 1件起订
更新时间 2023-11-09 区域 湖北省·武汉
详细介绍

ATOS阿托斯比例阀RZMO-P1-010/210 20 全新原装正品

武汉百士自动化设备有限公司
雷青
手机/微信: 15307180902
电话TEL: 027-87680708
通讯地址:湖北省武汉市蔡甸区长江路505号长江楚韵1栋2单元1502室

产品简介:

液压比例控制系统
以比例控制元件完成动力与运动方向控制,分为比例压力阀、比例流量阀、比例方向阀及比例方向流量阀,可为模拟量输入或数字量输入,视是否带反馈分为开环控制与闭环控制,一般获得频率不是很高(10HZ)以内,高频响阀可实现较高频率。
若精度要求不高可考虑使用电液比例控制系统,一般电液比例控制系统可达至以下精度
位置精度- 3 mm
速度精度带压力补偿器- 3%
加减速斜坡时间-0.5秒
压力带位移传感器的产品-比例压力阀设定的0.3% (如压力设定为200bar,精度可达0.6bar)
一般的多驱动器液压系统皆要求流量及压力控制,提供比例压力及流量控制系统
开环式比例压力及流量控制可用于定量泵及变量泵系统。
速度和流量比例控制的分别是:
流量控制只控制供油量,并不控制驱动元件的运动方向;
若系统负载及变速要求高,则要使用速度控制系统。
速度比例控制多用于自动化控制、注塑机、压力机等
使用闭环的主要原因:
保持设定值不受外来干扰所影响
→在不同的工作压力下保持稳定的速度
→在不同的输出力下保证相同位置
→在带偏载的情况下作同步移动
提高精度要求
→位置误差低于1 mm
→压力误差低于1 ba
→需要控制加减速度
高动态要求的系统
→模拟应用
→测验应用


液压伺服控制系统
以伺服控制元件完成动力与运动方向控制,综合压力、流量、方向控制为一体,利用偏差控制进行纠偏,以满足精度控制需要,必须为闭环控制,可实现较高频率( 100HZ以上) ,有滑阀式、喷嘴挡板式、射流管式等,常采用机械伺服、电液伺服、气液伺服。

液压伺服系统分类:
(1)按输入的信号变化规律分类:定值控制系统、程序控制系统和伺服系统三类。当系统输入信号为定值时,称为定值控制系统,其基本任务是提高系统的抗干扰能力。当系统的输入信号按预先给定的规律变化时,称为程序控制系统。伺服系统也称为随动系统,其输入信号是时间的未知函数,输出量能够准确、迅速地复现输入量的变化规律。
(2)按输入信号的不同分类:机液伺服系统、电液伺服系统、气液伺服系统等。
(3)按输出的物理量分类:位置伺服系统、速度伺服系统、力(或压力)伺服系统等。
(4)按控制元件分类:阀控系统和泵控系统。在机械设备中,阀控系统应用较多。


液压伺服系统的特点如下:
(1)反馈。把输出量的一部分或全部按一定方式回送到输入端,并和输入信号进行比较,这就是反馈。在上例中,反馈(测速装置输出)电压和给定(输入信号)电压是异号的,即反馈信号不断地抵消输入信号,这是负反馈。自动控制系统大多数是负反馈。
(2)偏差。要使液压缸输出一定的力和速度,伺服阀必须有一定的开口量,因此输入和输出之间必须有偏差信号。液压缸运动的结果又力图消除这个误差。但在伺服系统工作的任何时刻都不能完全消除这一-偏差,伺服系统正是依靠这一-偏差信号进行工作的。
(3)放大。执行元件(液压缸)输出的力和功率远远大于输入信号的力和功率,其输出的能量是液压能源供给的。
(4)跟踪。液压缸的输出量完全跟踪输入信号的变化。



电液比例阀是比例控制系统中的主要功率放大元件,按输入电信号指令连续地成比例地控制液压系统的压办流量等参数。与伺服控制系统中的伺服阀相比,在某些方面还有一定的性能差距(主要性能比较如表1所示),但它显著的优点是抗污染能力强,大大地减少了由污染而造成的工作故障,提高了液压系统的工作稳定性和可靠性。另一方面比例阀的成本比伺服阀低,结构也简单,已在许多场合获得广泛应用。

比例阀按功能分为三大类
(1)比例压力阀。有溢流阀减压阀,分别有直动和先导两种结构;可连续地或按比例地远程控制其输出油液压力;
(2)比例换向阀。有直动和先导两种结构,直动阀有带位移传感器和不带位移传感器两类。由于使用了比例电磁铁阀芯不仅可以换位,而且换位的行程可以连续地或按比例地变化。因而连通油口间的通流面积也可以连续或按比例地变化。所以比例换向阀不仅能够控制执行元件的方向而且能够控制其速度。因为这个原因比例阀中的比例换向阀应用也普遍;
(3)比例流量阀。有比例调速阀和比例溢流流量控制阀,可连续地或按比例地远程控制其输出流量。
比例阀的输入单元是电-机械转换器,它将输入的电信号转换成机械量转换器有伺服电机和步进电机力马达和力矩马达比例电磁铁等形式。但常用的比例阀大都采用了比例电磁铁,比例电磁铁根据电磁原理设计,能使其产生的机械量(力或力矩和位移)与输入电信号(电流)的大小成比例,再连续地控制液压阀阀芯的位置,进而实现连续地控制液压系统的压力方向和流量。比例电磁铁的结构,它由线圈、衔铁推杆等组成,当有信号输入线圈时,线圈内磁场对衔铁产生作用力,衔铁在磁场中按信号电流的大小和方向成比例连续地运动,再通过固连在一起的销钉带动推杆运动,从而控制滑阀阀芯的运动。应用的比例电磁铁是耐高压直流比例电磁铁。

比例电磁铁的类型按照工作原理主要分为
如下几类:
(1)力控制型
这类电磁铁的行程短,只有1 5mm,输出力与输入电流成正比,常用在比例阀的先导控制级
上:
(2)行程控制型
由力控制型加负载弹簧共同组成,电磁铁输出的力通过弹簧转换成输出位移,输出位移与输入电流成正比,工作行程达3mm,线性好,可以用在直控式比例阀上;
(3)位置调节型
衔铁的位置由传感器检测后,发出一个阀内反馈信号,在阀内进行比较后重新调节衔铁的位置。阀内形成闭环控制,精度高,衔铁的位置与力
无关,精度高的比例阀如德国的博世意大利的阿托斯等都采用这种结构。
比例阀与放大器配套使用放大器采用电流负反馈,设置斜坡信号发生器阶跃函数发生器、PD调节器反向器等,控制升压降压时间或运动加速度及减速度。断电时, 能使阀芯处于安全位置。
比例电磁铁和液压阀组成电液比例阀。由于比例电磁铁可以在不同的电流下得到不同的力(或行程),因此可以无级改变压力、流量。故比例电磁铁是比例阀的关键元件。

(1)比例环节
比例环节也称为无惯性环节,对液压缸或马达,忽略液压油的可压缩性和泄漏,液压缸的流量Q= VA。其中V为活塞速度;A为活塞面积。其传递函数为: g(s)= V (s)/Q(s)= 1/A =式中K为比例环节放大系数或增益,表示输入量经过放大K倍后输出。
(2)比例控制系统
比例控制系统根据有无反馈分为开环控制和闭环控制。如比例阀控制液压缸或马达系统可以实现速度位移转速和转矩等的控制。
由于开环控制系统的精度比较低,无级调节系统输入量就可以无级调节系统输出量力速度以及加减速度等。这种控制系统的结构组成简单,系统的输出端和输入端不存在反馈回路,系统输出量对系统输入控制作用没有影响,没有自动纠正偏差的能力,其控制精度主要取决于关键元器件的特性和系统调整精度,所以只能应用在精度要求不高并且不存在内外干扰的场合。开环控制系统一.般不存在所谓稳定性问题。
闭环控制系统(即反馈控制系统)的优点是对内部和外部干扰不敏感,系统工作原理是反馈控制原理或按偏差调整原理。这种控制系统有通
过负反馈控制自动纠正偏差的能力。但反馈带来了系统的稳定性问题,只要系统稳定,闭环控制系统可以保持较高的精度。因此, 目前普遍采用闭环控制系统。

(1)根据用途和被控对象选择比例阀的类型;
(2)正确了解比例阀的动静态指标主要有额定输出流量、起始电流滞环重复精度额定压力损失温飘、响应特性频率特性等;
(3)根据执行器的工作精度要求选择比例阀的精度,内含反馈闭环阀的稳态性动态品质好。如果比例阀的固有特性如滞环非线性等无法使被控系统达到理想的效果时,可以使用软件程序改善系统的性能;
(4)如果选择带先导阀的比例阀,要注意先导阀对油液污染度的要求。-般应符合ISO 18/5标准,并在油路上加装过滤精度为10um以下的进油过滤器;
(5)比例阀的通径应按执行器在高速度时通过的流量来确定,通径选得过大,会使系统的分辨率降低:
(6)比例阀必须使用与之配套的放大器,阀与放大器的距离应尽可能地短。

电液比例阀是采用了比例控制技术,介于开关型液压阀和电液伺服阀之间的-种液压元件,在工业生产中获得了广泛的应用,输入的电信号有模拟式和数字式两大类,可以用于控制位置(转角)、速度(转速)、加速度(角加速度)、压力(压差)、力(力矩)等参数。电液比例阀等元件可以组成如下三类控制回路和系统
(1)电液比例压力控制回路和系统。例如:用于带钢热连轧机卷取机液压辅助系统的电液比例压力控制回路,用于板带轧机辊缝控制的液压推上系统电液比例压力控制回路,用于带材卷取设备恒张力的闭环电液比例压力控制回路;
(2)电液比例流量控制回路和系统。例如:用于带钢热连轧机精轧机平衡液压系统的电液比例压力控制回路,用于机床微进给的电液比例控制回路,用于旋压机折板机同步的电液比例控制回路,用于电梯的电液比例控制回路;
(3)电液比例多参数控制回路和系统。例如:用于带钢热连轧机精轧换辊液压系统的电液比例压力控制回路,用于液压缸垂直配置而采用wI型阀芯的比例控制回路,用于热轧钢卷步进链式运输机的速度、加减速度控制回路。

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。

电液比例阀种类和形式
电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀,另一类是滑阀式比例阀。
滑阀式比例阀又称分配阀,是移动式机械液压系统基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等控制手段。它是工程机械分配阀更新换代产品。
出于制造成本考虑和工程机械控制精度要求不高特点,--般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界千涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一.般比例阀缺点,使控制精度到较大提高。

电液比例多路阀负载传感与压力补偿技术
节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿是一一个很相似概念,都是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。压力补偿是提高阀控制性能而采取一种保证措施。将阀口后负载压力引入压力补偿阀,压力补偿阀对阀口前压力进行调整使阀口前后压差为常值,这样节流口流量调节特性流经阀口流量大小就只与该阀口开度有关,而不受负载压力影响。

工程机械电液比例阀先导控制与遥控
电液比例阀和其它器件技术进步使工程车辆挡位、转向、制动和工作装置等各种系统电气控制成为现实。一般需要位移输出机构可采用比例伺服控制手动多路阀驱动器完成。电气操作具有响应快、布线灵活、可实现集成控制和与计算机接口容易等优点,现代工程机械液压阀已越来越多采用电控先导控制电液比例阀(或电液开关阀)代替手动直接操作或液压先导控制多路阀。采用电液比例阀(或电液开关阀)另一个显著优点是工程车辆上可以大大减少操作手柄个数,这使驾驶室布置简洁,能够有效降低操作复杂性,对提高作业质量和效率都具有重要实际意义。

电液比例阀工程机械上应用实例
汽车起重机液压系统。该机采用了3片型比例多路阀,负载传感油路中3个梭阀将3个工作负载中大压力选出来送至远程调压溢流阀远控口,调整溢流阀溢流压力,使液压泵输出压力恰好符合系统负载需要即可,达到一定节能目。压力补偿油路使每一片阀流量仅与该阀开度有关,而所承受负载无关,它阀片所承受负载也没有关系,达到任一负载下均可随意控制负载速度目。
推土机推土铲手动与电液比例先导控制实例。当二位三通电磁阀不通电时,先导压力与手动减压式先导阀相通,梭阀选择来自手动先导阀压力对液动换向阀进行控制;当二位三通电磁阀通电时,先导控制压力油通向三通比例减压式先导阀,梭阀对液动换向阀进行控制。


DSE3系列阀是一种直动式比例方向阀。该阀为板式安装,符合ISO4401标准,该阀通常用于液压执行机构的方向和速度控制,该阀开度及流量连续调节,并与输入电磁铁的电流成正比,该阀能直接通过电流源控制或者通过配套电子控制单元控制,从而充分发挥阀的功能。

比例控制技术在液压系统中的应用越来越广泛,比例方向阀调节执行元件速度时,与压力补偿器配合使用,其优点可使比例阀阀口越来差基本保持不变,从而使执行元件的速度不受负载变化的影响。目前,压力补偿器已广泛应用于冶金、电力、建筑、煤矿机械等各个行业。

比例控制技术是在开关控制技术和伺服控制技术之间的过度技术,采用比例放大器控制比例电磁铁,实现对比例阀的连续控制,从而实现对液压系统压力、流量、方向的无级调节;但是用比例阀进行速度控制时,如果负载是变化的,那么执行元件的速度就会受负载变化的影响,负载小时速度快,负载大时速度慢,于是在系统设计时,人们引用了压力补偿器,它可以使比例阀阀口的压差保持恒定,使执行元件的速度不受负载变化的影响。


RPCE3-*阀是一种带有压力和温度补偿的 2 通式或 3 通式比例流量阀。该阀为板式安装,完全符合 CETOP 标准。该阀一般通常用于液压回路支路的流量控制或液压执行机构的速度控制。该阀流量可由电磁铁的输入电流连续调节,并与输入电流成正比。该阀可以直接采用电流源控制,或用配套的电子控制单元进行控制,以充分发挥阀的性能。阀可工作于 3 种流量范围: 两种具有线性增益,大流量为 140l/min ;一种具有可变增益,大流量为 115 l/min。应注意阀性能参数和正确使用。该阀小流量为 2l/min,所需小压力为 20bar。先导控制可为内控,即 E 路为进油口。也可位外控,即直接从阀体上用油管(1/4” BSP 螺纹)引出。泄油口必须外接并与油箱直接相通,以免产生背压。泄漏油管可从安装板 Y 口 (OR ?35) 引出或用油管(1/4” BSP 螺纹)从阀体上的先导孔引出。3 通式 RPCE3-*-T3 控制回路多余的流量可直接流回油箱。系统的大压力受该阀的手动溢流阀限制。RPCE3-*-T3 阀可以选配泄荷功能(选项/M)。通过电气控制可使该阀在压力损失小的情况下,全流量泄荷。

负载敏感控制一泵驱动多个负载的时候,为了避免负载之间压力差异影响速度,通常会在每一个负载敏感比例阀后面或前面增加一个压力补偿器。第二种情况是两个或多个比例阀控制油缸或马达时,同步精度不高,可选择比例阀和压力补偿器的组合方式。

比例控制技术是在开关控制技术和伺服控制技术之间的过渡技术,采用比例放大器控制比例电磁铁,实现对比例阀的连续控制,从而实现对液压系统压力、流量、方向的无级调节;但是用比例方向阀进行速度控制时,如果负载是变化的,那么执行元件的速度就会受负载变化的影响(负载小时速度快,负载大时速度慢);于是在系统设计时,人们引入了压力补偿器,它可以使比例阀阀口的压差保持恒定,使执行元件的速度不受负载变化的影响。

某钢厂步进梁式加热炉中步进梁升降液压回路。 此回路使用了比例方向阀与进口压力补偿。 由于步进梁下降时,存在超越负载,所以在油缸无杆腔设置了平衡阀。 压力补偿器的弹簧调定后(这里为定值),比例阀节流口的压差 Δp 就近似为恒定值,即比例方向阀进油口前后压差 Δp 保持恒定值。 当节流口前后压差保持不变时,通过节流口的流量只与节流口的开口面积成正比。 对比例方向阀而言, 进油节流口的开口面积与比例方向阀的输入电流信号有关,而与负载的变化无关。 亦即升降油缸的供油流量 Q 只与比例方向阀的输入电流信号有关,与负载的变化无关。

补偿器主要用于节流调速系统 ,即补偿比例阀口的压差,在定量泵系统中得到了广泛的应用;但这种应用不可避免地会产生一定的溢流损失;如果二通压力补偿器与泵控压力补偿器配合使用,则可以实现容积节流调速。 

变量泵+比例多路阀的形式, 组成了负载敏感回路;除每一联多路阀都设有进口压力补偿器外;变量泵还配有泵控压力补偿器;此补偿器与反馈油路配合可实现负载敏感控制, 使此回路不仅降低了比例阀阀口的节流损失,也将液压系统的溢流损失降到低。



阀对流量的控制可以分为两种:
一种是开关控制:要么全开、要么全关,流量要么大、要么小,没有中间状态,如普通的电磁直通阀、电磁换向阀、电液换向阀。
另一种是连续控制:阀口可以根据需要打开任意一个开度,由此控制通过流量的大小,这类阀有手动控制的,如节流阀,也有电控的,如比例阀、伺服阀。
所以使用比例阀或伺服阀的目的就是:以电控方式实现对流量的节流控制(当然经过结构上的改动也可实现压力控制等),既然是节流控制,就必然有能量损失,伺服阀和其它阀不同的是,它的能量损失更大一些,因为它需要一定的流量来维持前置级控制油路的工作。


液压伺服阀包括:滑阀式伺服阀、喷嘴挡板式伺服阀、射流管式伺服阀。
滑阀式伺服阀:采用动圈式力马达,结构简单,功率放大系数较大,滞环小和工作行程大;固定节流口尺寸大,不易被污物堵塞;主滑阀两端控制油压作用面积大,从而加大了驱动力,使滑阀不易卡死,工作可靠。
喷嘴挡板式伺服阀:该伺服阀,由于力反馈的存在,使得力矩马达在其零点附近工作,即衔铁偏转角很小,故线性度好。此外,改变反馈弹簧杆11的刚度,就能在相同输入电流时改变滑阀的位移。该伺服阀结构紧凑,外形尺寸小,响应快。但喷嘴挡板的工作间隙较小,对油液的清洁度要求较高。
射流管式伺服阀:对油液的清洁度要求较低。缺点是零位泄漏量大;受油液粘度变化影响显著,低温特性差;力矩马达带动射流管,负载惯量大,响应速度低于喷嘴挡板阀。

一、滑阀式伺服阀
由永磁动圈式力马达、一对固定节流孔、预开口双边滑阀式前置液压放大器和三通滑阀式功率级组成。前置控制滑阀的两个预开口节流控制边与两个固定节流孔组成一个液压桥路。滑阀副的阀心(控制阀芯)直接与力马达的动圈骨架相连,(控制阀芯)在阀套内滑动。前置级的阀套又是功率级滑阀放大器的阀心。
输入控制电流使力马达动圈产生的电磁力与对中弹簧的弹簧力相平衡,使动圈和前置级(控制级)阀心(控制阀芯)移动,其位移量与动圈电流成正比。前置级阀心(控制阀芯)若向右移动,则滑阀右腔控制口·面积增大,右腔控制压力降低;左侧控制口·面积减小,左腔控制压力升高。该压力差作用在功率级滑阀阀心(即前置级的阀套)的两端上,使功率级滑阀阀心(主滑阀)向右移动,也就是前置级滑阀的阀套(主滑阀)向右移动,逐渐减小右侧控制孔的面积,直至停留在某一位置。在此位置上,前置级滑阀副的两个可变节流控制孔的面积相等,功率级滑阀阀心(主滑阀)两端的压力相等。这种直接反馈的作用,使功率级滑阀阀心跟随前置级滑阀阀心运动,功率级滑阀阀心的位移与动圈输入电流大小成正比。
二、喷嘴挡板式伺服阀
衔铁式力马达,喷嘴挡板式和滑阀式液压放大器。衔铁与挡板和弹簧杆连接在一起,由固定在阀体上的弹簧管支承。弹簧杆下端为一球头,嵌放在滑阀的凹槽内,磁铁和导磁体形成一个固定磁场。当线圈中没有电流通过时,衔铁和导磁体间的四个气隙中的磁通相等,且方向相同,衔铁与挡板都处于中间位置,因此滑阀没有油输出。当有控制电流流入线圈时,一组对角方向的气隙中的磁通增加,另一组对角方向的气隙中的磁通减小,于是衔铁在磁力作用下克服弹簧管的弹性反作用力而以弹簧管中的某一点为支点偏转θ角,并偏转到磁力所产生的转矩与弹簧管的弹性反作用力产生的反转矩平衡时为止。这时滑阀尚未移动,而挡板因随衔铁偏转而发生挠曲,改变了它与两个喷嘴之间的间隙,一个间隙减小,另一个间隙增大。
通入伺服阀的压力油经滤油器,两个对称的固定节流孔和左右喷嘴流出,通向回油。当挡板挠曲,喷嘴挡板的两个间隙不相等时,两喷嘴后侧的压力pa和pb就不相等,它们作用在滑阀的左右端面上,使滑阀向相应方向移动一段距离,压力油就通过滑阀上的一个阀口输向执行元件,由执行元件回来的油经滑阀上另一个阀口通向回油。滑阀移动时,弹簧杆下端球头跟着移动,在衔铁挡板组件上产生转矩,使衔铁向相应方向偏转,并使挡板在两喷嘴间的偏移量减少,这就是所谓力反馈。反馈作用的结果,是使滑阀两端的压差减小。当滑阀通过弹簧杆作用于挡板的力矩,喷嘴作用于挡板的力矩以及弹簧管反力矩之和等于力矩马达产生的电磁力矩时,滑阀不再移动,并一直使其阀口保持在这一开度上。通入线圈的控制电流越大,使衔铁偏转的转矩,弹簧杆的挠曲变形,滑阀两端的压差以及滑阀的偏移量就越大,伺服阀输出的流量也就越大。由于滑阀的位移,喷嘴与挡板之间的间隙,衔铁转角都依次和输入电流成正比,因此这种阀的输出流量也和输入电流成正比。输入电流反向时,输出流量也反向。
三、射流管式伺服阀
衔铁式力矩马达带动射流管,两个接收孔直接和主阀两端面连接,控制主阀运动。主阀靠一个板簧定位,其位移与主阀两端压力差成比例。这种阀的最小通流尺寸(射流管口尺寸)比喷嘴挡板的工作间隙大4~10倍,故对油液的清洁度要求较低。缺点是零位泄漏量大;受油液粘度变化影响显著,低温特性差;力矩马达带动射流管,负载惯量大,响应速度低于喷嘴挡板阀。




伺服阀,是电液转换元件同时也是功率放大原件。是电液伺服系统控制的核心。
伺服阀,主要由6部分组成,分别是:永磁力矩马达、喷嘴、档板、阀芯、阀套以及控制腔。而它的工作原理就是当连通电流的时候,挡板会向右移动,使得其右边的喷嘴节能作用变强,自然流量也会随之减少。与此同时左边喷嘴节流作用会减少,流量会随之增加。这时候阀芯它两端就会失去平衡,使得阀芯会向左移动。然后阀芯它的位移量跟马达的电流量是形成正比的,而在阀芯上面的液压力跟弹簧力是刚好平衡的。
典型的伺服阀由永磁力矩马达、喷嘴、档板、阀芯、阀套和控制腔组成。当输入线圈通入电流时,档板向右移动,使右边喷嘴的节流作用加强,流量减少,右侧背压上升;同时使左边喷嘴节流作用减小,流量增加,左侧背压下降。阀芯两端的作用力失去平衡, 阀芯遂向左移动。高压油从流向,送到负载。负载回油通过流过回油口,进入油箱。阀芯的位移量与力矩马达的输入电流成正比,作用在阀芯上的液压力与弹簧力相平衡,因此在平衡状态下力矩马达的差动电流与阀芯的位移成正比。如果输入的电流反向,则流量也反向。

伺服阀主要用在电气液压伺服系统中作为执行元件(见液压伺服系统)。在伺服系统中,液压执行机构同电气及气动执行机构相比,具有快速性好、单位重量输出功率大、传动平稳、抗干扰能力强等特点。另一方面,在伺服系统中传递信号和校正特性时多用电气元件。因此,现代高性能的伺服系统也都采用电液方式,伺服阀就是这种系统的必需元件。

伺服阀结构比较复杂,造价高,对油的质量和清洁度要求高。新型的伺服阀正试图克服这些缺点,例如利用电致伸缩元件的伺服阀,使结构大为简化。另一个方向是研制特殊的工作油(如电气粘性油)。这种工作油能在电磁的作用下改变粘性系数。利用这一性质就可通过电信号直接控制油流。

电液伺服阀广泛地应用于电液位置,速度,加速度,力伺服系统,以及伺服振动发生器中.它具有体积小,结构紧凑,功率放大系数高,控制精度高,直线性好,死区小,灵敏度高,动态性能好以及响应速度快等优点。




液压伺服阀结构及工作原理
滑阀式伺服阀:
采用动圈式力马达,结构简单,功率放大系数较大,滞环小和工作行程大;固定节流口尺寸大,不易被污物堵塞;主滑阀两端控制油压作用面积大,从而加大了驱动力,使滑阀不易卡死,工作可靠。
喷嘴挡板式伺服阀:
该伺服阀,由于力反馈的存在,使得力矩马达在其零点附近工作,即衔铁偏转角θ很小,故线性度好。此外,改变反馈弹簧杆11的刚度,就能在相同输入电流时改变滑阀的位移。该伺服阀结构紧凑,外形尺寸小,响应快。但喷嘴挡板的工作间隙较小,对油液的清洁度要求较高。
射流管式伺服阀:
对油液的清洁度要求较低。缺点是零位泄漏量大;受油液粘度变化影响显著,低温特差;力矩马达带动射流管,负载惯量大,响应速度低于喷嘴挡板阀。
滑阀式伺服阀
由永磁动圈式力马达、一对固定节流孔、预开口双边滑阀式前置液压放大器和三通滑阀式功率级组成。前置控制滑阀的两个预开口节流控制边与两个固定节流孔组成一个液压桥路。滑阀副的阀心(控制阀芯)直接与力马达的动圈骨架相连,(控制阀芯)在阀套内滑动。前置级的阀套又是功率级滑阀放大器的阀心。输入控制电流使力马达动圈产生的电磁力与对中弹簧的弹簧力相平衡,使动圈和前置级(控制级)阀心(控制阀芯)移动,其移量与动圈电流成正比。前置级阀心(控制阀芯)若向右移动,则滑阀右腔控制口·面积增大,右腔控制压力降低;左侧控制口·面积减小,左腔控制压力升高。该压力差作用在功率级滑阀阀心(即前置级的阀套)的两端上,使功率级滑阀阀心(主滑阀)向右移动,也就是前置级滑阀的阀套(主滑阀)向右移动,逐渐减小右侧控制孔的面积,直至停留在某位置。在此位置上,前置级滑阀副的两个可变节流控制孔的面积相等,功率级滑阀阀心(主滑阀)两端的压力相等。这种直接反馈的作用,使功率级滑阀阀心跟随前置级滑阀阀心运动,功率级滑阀阀心的位移与动圈输入电流大小成正比。
滑阀式伺服阀
由永磁动圈式力马达、一对固定节流孔、预开口双边滑阀式前置液压放大器和三通滑阀式功率级组成。前置控制滑阀的两个预开口节流控制边与两个固定节流孔组成一个液压路。滑阀副的阀心(控制阀芯)直接与力马达的动圈骨架相连,(控制阀芯)在阀套内滑动。前置级的阀套又是功率级滑阀放大器的阀心。
输入控制电流使力马达动圈产生的电磁力与对中弹簧的弹簧力相平衡,使动圈和前置级(控制级)阀心(控制阀芯)移动,其位移量与动圈电流成正比。前置级阀心(控阀芯)若向右移动,则滑阀右腔控制口·面积增大,右腔控制压力降低;左侧控制口面积减小,左腔控制压力升高。该压力差作用在功率级滑阀阀心(即前置级的阀套)的两端上,使功率级滑阀阀心主滑阀)向右移动,也就是前置级滑阀的阀套(主滑阀)向右移动,逐渐减小右侧控制孔的面积,直至停留在某一位置。在此位置上,前置级滑阀副的两个可变节流制孔的面积相等,功率级滑阀阀心(主滑阀)两端的压力相等。这种直接反馈的作用,使率级滑阀阀心跟随前置级滑阀阀心运动,功率级滑阀阀心的位移与动圈输入电流大小成比。


液控伺服阀主要是指电液伺服阀,它在接受电气模拟信号后,相应输出调制的流量和压力。它既是电液转换元件,也是功率放大元件,它能够将小功率的微弱电气输入信号转换为大功率的液压能(流量和压力)输出。在电液伺服系统中,它将电气部分与液压部分连接起来,实现电液信号的转换与液压放大。电液伺服阀是电液伺服系统控制的核心。
液控伺服阀是在伺服系统中将电信号输入转换为功率较大的压力或流量压力信号输出的执行元件。它是一种电液转换和功率放大元件。伺服阀的灵敏度高,快速性好,能将很小的电信号(例如10毫安)转换成很大的液压功率(如几十匹马力以上),可以驱动多种类型的负载。过去人们曾把喷嘴档板阀、射流管或滑阀伺服马达等液压放大装置都列入伺服阀范围内。20世纪70年代以来,伺服阀一般仅指电液伺服阀。

电液伺服阀广泛地应用于电液位置,速度,加速度,力伺服系统,以及伺服振动发生器中.它具有体积小,结构紧凑,功率放大系数高,控制精度高,直线性好,死区小,灵敏度高,动态性能好以及响应速度快等优点。

典型的伺服阀由永磁力矩马达、喷嘴、档板、阀芯、阀套和控制腔组成。当输入线圈通入电流伺服阀时,档板向右移动,使右边喷嘴的节流作用加强,流量减少,右侧背压上升;同时使左边喷嘴节流作用减小,流量增加,左侧背压下降。阀芯两端的作用力失去平衡, 阀芯遂向左移动。高压油从S流向C2,送到负载。负载回油通过 C1流过回油口,进入油箱。阀芯的位移量与力矩马达的输入电流成正比,作用在阀芯上的液压力与弹簧力相平衡,因此在平衡状态下力矩马达的差动电流与阀芯的位移成正比。如果输入的电流反向,则流量也反向。表中是伺服阀的分类。
伺服阀主要用在电气液压伺服系统中作为执行元件(见液压伺服系统)。在伺服系统中,液压执行机构同电气及气动执行机构相比,具有快速性好、单位重量输出功率大、传动平稳、抗干扰能力强等特点。另一方面,在伺服系统中传递信号和校正特性时多用电气元件。因此,现代高性能的伺服系统也都采用电液方式,伺服阀就是这种系统的必需元件。
伺服阀结构比较复杂,造价高,对油的质量和清洁度要求高。新型的伺服阀正试图克服这些缺点,例如利用电致伸缩元件的伺服阀,使结构大为简化。另一个方向是研制特殊的工作油(如电气粘性油)。这种工作油能在电磁的作用下改变粘性系数。利用这一性质就可通过电信号直接控制油流。


伺服阀的主阀一般来说和换向阀一样是滑阀结构,只不过阀芯的换向不是靠电磁铁来推动,而是靠前置级阀输出的液压力来推动,这一点和电液换向阀比较相似,只不过电液换向阀的前置级阀是电磁换向阀,而伺服阀的前置级阀是动态特性比较好的喷嘴挡板阀或射流管阀。
也就是说,伺服阀的主阀是靠前置级阀的输出压力来控制的,而前置级阀的压力则来自于伺服阀的入口p,假如p口的压力不足,前置级阀就不能输出足够的压力来推动主阀芯动作。
而我们知道,当负载为零的时候,如果四通滑阀完全打开,p口压力=t口压力+阀口压力损失(忽略油路上的其它压力损失),如果阀口压力损失很小,t口压力又为零,那么p口的压力就不足以供给前置级阀来推动主阀芯,整个伺服阀就失效了。所以伺服阀的阀口做得偏小,即使在阀口全开的情况下,也要有一定的压力损失,来维持前置级阀的正常工作。
伺服阀其实缺点极多:能耗浪费大、容易出故障、抗污染能力差、价格昂贵等等等等,好处只有一个:动态性能是所有液压阀中高的。就凭着这一个优点,在很多对动态特性要求高的场合不得不使用伺服阀,如飞机火箭的舵机控制、汽轮机调速等等。动态要求低一点的,基本上都是比例阀的天下了。
一般说来,好像伺服系统都是闭环控制,比例多用于开环控制;其次比例阀类型要多,有比例压力、流量控制阀等,控制比伺服要灵活一些。从他们内部结构看,伺服阀多是零遮盖,比例阀则有一定的死区,控制精度要低,响应要慢。但从发展趋势看,特别在比例方向流量控制阀和伺服阀方面,两者性能差别逐渐在缩小,另外比例阀的成本比伺服阀要低许多,抗污染能力也强!

伺服阀与比例阀的区别
伺服阀与比例阀之间的差别并没有严格的规定,因为比例阀的性能越来越好,逐渐向伺服阀靠近,所以近些年出现了比例伺服阀。
比例阀和伺服阀的区别主要体现在以下几点:
1.驱动装置不同。比例阀的驱动装置是比例电磁铁;伺服阀的驱动装置是力马达或力矩马达;
2.性能参数不同。滞环、中位死区、频宽、过滤精度等特性不同,因此应用场合不同,伺服阀和伺服比例阀主要应用在闭环控制系统,其它结构的比例阀主要应用在开环控系统及闭环速度控制系统;
2.1 伺服阀中位没有死区,比例阀有中位死区;
2.2 伺服阀的频响(响应频率)更高,可以高达200Hz左右,比例阀一般高几十Hz;
2.3 伺服阀对液压油液的要求更高,需要精过滤才行,否则容易堵塞,比例阀要求低一些;
3.阀芯结构及加工精度不同。比例阀采用阀芯+阀体结构,阀体兼作阀套。伺服阀和伺服比例阀采用阀芯+阀套的结构。
4.中位机能种类不同。比例换向阀具有与普通换向阀相似的中位机能,而伺服阀中位机能只有O型(Rexroth产品的E型)。
5.阀的额定压降不同。
而比例伺服阀性能介于伺服阀和比例阀之间。
比例换向阀属于比例阀的一种,用来控制流量和流向。
3延伸资料


---电气比例阀
自动控制可分成断续控制和连续控制。断续控制即开关控制。气动控制系统中使用动作频率较低的开关式(ON-OFF)的换向阀来控制气路的通断。靠减压阀来调节所需要的压力,靠节流阀来调节所需要的流量。这种传统的气动控制系统要想要有多个输出力和多个运动速度,就需要多个减压阀、节流阀及换向阀。这样,不仅元件需要多,成本高,构成系统复杂,且许多元件都需要预行人工调节。电气比例阀控制属于连续控制,其特点是输出量随输入量的变化而变化,输出量与输入量之间存在一定的比例关系。比例控制有开环控制和闭环控制之分。
结构原理
输入信号增大,供气用电磁阀先导阀1换向,而排气用电磁先导阀7处于复位状态,则供气压力从SUP口通过阀1进入先导室5,先导室压力上升,气压力作用在膜片2的上方,则和膜片2相连的供气阀芯4便开启,排气阀芯3关闭,产生输出压力。此输出压力通过压力传感器6反馈至控制回路8。在这里,与目标值进行快速比较修正,知道输出压力与输入信号成一定比例为止,从而得到输出压力与输入信号的变化成比例的变化。由于没有喷嘴挡板机构,故阀对杂质不敏感,可靠性高。
特点
1)可实现压力、速度的无极调节,避免了常通的开关式气阀换向时的冲击现象。
2)能实现远程控制和程序控制。
3)与断续控制相比,系统简化,元件大大减少。
4)与液压比例阀相比,体积小、重量轻、结构简单、成本较低,但响应速度比液压系统慢得多,对负载变化也比较敏感。
5)使用功率小、发热少、噪声低。
6)不会发生火灾,不污染环境。受温度变化的影响小。


电液比例阀简称比例阀普通液压阀能通预调式液流压力、流量进行定值控制设备机构工作程要求液压系统压力、流量参数进行调节或连续控制例.要求工作台工作进给按慢、快、慢连续变化速度实现进给或按定精度模拟某佳控制曲线实现旅力控制.普通液压阀则实现用电液比例阀液压系统进行控制
    电液比例阀种按输入电信号连续、按比例控制液压系统液流向、流量压力阀类山电-机械比例转换装置液压控制阀本体两部构.前者输入电信号连续按比例转换机械力位移输者接受种机械力位移、按比例连续输压力流量.
    电液比例阀发展主要两途径用比例电磁铁取代传统液压阀手调节装置或取代普通电磁铁发展起;二由电液伺服阀简化结构、降低精度发展起面介绍比例阀均指前者今比例阀主流与普通液压阀互换
    比例电磁铁直流电磁铁与普通直流电磁铁同普通直流电磁铁衔铁吸合断两工作位置并且吸合磁路几乎没气隙.比例电磁铁要求吸合力或位移与给定电流比例并衔铁全部工作行程磁路保持定气隙‘.其结构主要由极靴1、线圈2、壳体5衔铁10等组线圈2通电产磁场隔磁环4存使磁力线主要部通衔铁10、气隙极靴1形路口极靴衔铁产吸力门线圈电流定吸力极靴1与衔铁间距离同变化衔铁气隙适段行程吸力随位置改变发变化


普通溢流阀与比例溢流阀一样,都有一个阀芯,阀芯的一端是液压油产生的压力,另一端是机械力。普通溢流阀通过调节弹簧力,来调整液压压力。而比例溢流阀是电磁铁直接产生推力,作用在阀芯上,电磁铁上的输入电压可以在0-24伏之间变化,产生的推力就随之变化,从而得到连续变化的液压压力。

因为比例电磁铁的推力不大,所以直动式比例溢流阀的流量很小,压力70兆帕时,流量只有1升/分钟左右。需要大流量比例阀的时候,要把这个比例阀做先导阀,下面还要配一个大通径的溢流阀。 


MOOG伺服阀是我们公司优势品牌,目前仓库现货达400多万,达30多台,有多个品种,能解您的燃眉之急。像钢厂用的D661-444C,D661-4443C,D661-4651,D661-4652等,试验机用的G761-3005,G761-3004等,汽轮机用的D633-313B,D633-314B等,铝厂用的072-1202-10等仓库都是常备现货。我们有独立的进口报关权,可以为您提供海关清关单,如果需要原产地证明我们也可以为您提供的。
流量制伺服阀 用于提供与电流输入成正比的液流输
1)带现场总线接口的流量控制阀
带有内置式现场总线接口(CANopen、EtherCAT 或 Profibus DP V1)的伺服阀可先对操作参数进行设定,开启阀门并监控其操作性能。
2)带模拟接口的流量控制阀
带集成电路
此伺服阀可 将放大器和相关电路集成到阀体内。
3)不带集成电
该伺服阀利用外接式放大器卡将输入信号转换成为驱动伺服阀扭矩电机的控制电流。
MOOG穆格伺服阀穆格伺服射流管先导阀的优点
明显改善了流量利用效率(90% 以上的先导级流量被利用),有助于降低能耗,此优点对于使用多台伺服比例阀的机器尤显突出。
格伺服射流管先导阀具有很高的无阻尼自然频率 (500 Hz),因此这种阀的动态响应较高。性能可靠。
先导级zui低控制压力仅 25 bar,此优点使该伺服比例控制阀甚至可用于如汽轮机控制一类的低压系统中。
穆格伺服射流管先导阀的内置过滤器的的名义间隙均为 200 μm,因此其寿命几乎是无限的。基于伺服射流管先导阀比较扁平的压力增益特征使其具有无可挑剔的工作性能。


产品型号:

阿托斯ATOS直动式溢流阀 
RZMA-A-010/250/M 21 
RZMA-A-030/180/M/7 21 
RZMO-A-010/100 
RZMO-A-010/100 20
RZMO-A-010/210 
RZMO-A-010/210/18 20 
RZMO-A-010/315 
RZMO-A-010/315 20
RZMO-A-010/315/18 
RZMO-A-010/50  
RZMO-A-010/50/18 
RZMO-A-030/100 20 
RZMO-A-030/210 20 
RZMO-A-030/210/18 
RZMO-A-030/315 
RZMO-AE-010/315 10 
RZMO-AE-030/100 40 
RZMO-P1-010/100/18/MC 20 
RZMO-P1-010/210 
RZMO-P1-010/210 20
RZMO-P1-010/315
RZMO-P3-010/100/AM1NSA 
RZMO-P3-010/100/I/AM1NSA 
RZMO-P3-010/210/I/AM1NS 
RZMO-P3-010/210/I/AMINSA 
RZMO-TER-010/100 40
RZMO-TER-010/315 40 
RZMO-TER-010/315/I 40
RZMO-TER-030/210 40 
RZMO-TER-030/315/I 40 
RZMO-REB-P-NP-010/315

先导式溢流阀    
AGMZA-A-10/250/M 
AGMZA-A-10/250/PA-M 
AGMZA-A-10/80/PA-GK 21 
AGMZA-A-10/80/PA-GK/24 21 
AGMZA-A-20/250/M 
AGMZO-A-10/100 
AGMZO-A-10/100/Y 20 
AGMZO-A-10/210 
AGMZO-A-10/210/18 
AGMZO-A-10/210/E 
AGMZO-A-10/210/Y 
AGMZO-A-10/315 
AGMZO-A-10/315/E 20 
AGMZO-A-10/315/Y 
AGMZO-A-20/210 
AGMZO-A-20/315 
AGMZO-A-20/315/Y 
AGMZO-A-32/315 
AGMZO-AE-10/210 10 
AGMZO-AE-10/315 10  
AGMZO-AE-20/315/Y 10 
AGMZO-AE-32/315  
AGMZO-TER-010/210/I 
AGMZO-TER-10/100/I 
AGMZO-TER-10/210
AGMZO-TER-10/315/Y 40  
AGMZO-TER-20/210 
AGMZO-TER-20/315/Y 40 

ATOS阿托斯先导式减压阀
AGRCZO-A-10/100/P 10 
AGRCZO-A-10/210 10 
AGRCZO-A-10/210/P 10 
AGRCZO-A-10/315 10 
AGRCZO-A-10/315/P 10 
AGRCZO-A-10/210/R 20
AGRCZO-A-20/210/R 10  
AGRCZO-AE-10/210 10 
AGRCZO-AE-10/50 10 
AGRCZO-AE-20/210/P 
AGRCZO-TER-10/315 40 
AGRZO-A-10/100/P 
AGRZO-A-10/210/P
AGRZO-A-10/210/R 
AGRZO-A-10/315 
AGRZO-A-20/210/18
AGMZO-TER-10/210/EI 
AGMZO-TER-10/210/I 
AGMZO-TER-10/315 40 
AGMZO-TER-10/315/I 40/PE  
AGRCZO-REB-P-NP-10/315/I

ATOS阿托斯比例换向阀
DHZA-A-051-S3/M/7 21 
DHZA-A-051-S3/PA-GK/7 
DHZA-A-051-S5/M/7 21 
DHZA-A-071-L5/M/7 21 
DHZO-A-071-L3
DHZO-A-051-S5 
DHZO-A-051-S5/18 
DHZO-A-053-L3 20 
DHZO-A-053-L3/18 
DHZO-A-053-L5 
DHZO-A-053-L5/18 
DHZO-A-060-S3 
DHZO-A-071-L1 20 
DHZO-A-071-L1/18 
DHZO-A-071-L5 
DHZO-A-071-L5/18 20  
DHZO-A-071-S3 20 
DHZO-A-071-S5 
DHZO-A-073-D5 
DHZO-A-073-D5/18  
DHZO-A-073-L5  
DHZO-A-073-S3 20  
DHZO-A-073-S5 
DHZO-AE-051-S5 10 
DHZO-AE-071-D5/I 
DHZO-AE-071-S5/I 
DHZO-AE-073-D5/I 10  
DHZO-AE-073-S5 10 
DHZO-AE-073-S5/I 10 
DHZO-AT-073-P3 20 
DHZO-ATE-073-P3/B/DP27SB 20  
DHZO-T-051-L1  
DHZO-T-051-L5 31 
DHZO-T-071-D5 
DHZO-T-071-L5 
DHZO-T-071-S5 
DHZO-T-071-L5 31
DHZO-TE-051-L5/Y 40 
DHZO-TE-071-L5 
DHZO-TE-071-S5 40 /PE 
DHZO-TE-073-S5
DKZA-A-173-L5/PA-M/7 
DKZO-A-151-S5 
DKZO-A-171-L5 
DKZO-A-173-S5 
DKZOR-A-151-S5 
DKZOR-A-151-S5/18 40 
DKZOR-A-151-S5/B 
DKZOR-A-153-L5/B 
DKZOR-A-171-D5 40 
DKZOR-A-171-L5 
DKZOR-A-171-S5 
DKZOR-A-171-S5/18 
DKZOR-A-173-D5 
DKZOR-A-173-L5 
DKZOR-A-173-L5/18 40 
DKZOR-A-173-L5/Y 
DKZOR-A-173-S3 
DKZOR-A-173-S5  
DKZOR-A-173-S5/18 
DKZOR-AE-171-L5 10 
DKZOR-AE-171-S5 
DKZOR-AE-171-S5 10/WG 
DKZOR-AE-171-S5/Y 10 
DKZOR-AE-173-D5 10  
DKZOR-AE-173-L5 10  
DKZORC-A-151-S5/18 
DKZOR-T-151-L5 
DKZOR-T-151-L5/Y 
DKZOR-T-153-L5 
DKZOR-T-171-D5 
DKZOR-T-171-L5 
DKZOR-T-171-S5 
DKZOR-T-171-S5/Y 
DKZOR-T-173-L5 40 
DKZOR-TE-170-L5 40 
DKZOR-TE-171-L5 
DKZOR-TE-171-L5/I 40 
DKZOR-TE-171-S5 
DKZOR-TE-171-S5/Y 
DKZOR-TE-173-L5 40  
DKZO-T-171-S3 
DKZO-T-173-S5 

伺服比例阀 
DLHZA-T-040-L71/M/7 
DLHZA-T-040-T71/GK 31 
DLHZA-T-060-T71/GK 31 
DLHZO-LE-060-V71/LQ52SA 40 
DLHZO-LE-060-V71/Q/LQ42SB 40  
DLHZO-LE-060-V71/Q/LQ52SA 40 
DLHZO-T-040-L11 
DLHZO-T-040-L13 
DLHZO-T-040-L31  
DLHZO-T-040-L51  
DLHZO-T-040-L53 
DLHZO-T-040-L71 
DLHZO-T-040-L73 31 
DLHZO-T-040-V71 
DLHZO-TE-040-L11 
DLHZO-TE-040-L11/I 
DLHZO-TE-040-L31 40 
DLHZO-TE-040-L31/FI 40 
DLHZO-TE-040-L31/I 
DLHZO-TE-040-L33/I 40 
DLHZO-TE-040-L51 40  
DLHZO-TE-040-L51/FI 40 
DLHZO-TE-040-L51/I  
DLHZO-TE-040-L53 40 
DLHZO-TE-040-L71 
DLHZO-TE-040-L71/I 40 
DLHZO-TE-040-L73 40 
DLHZO-TE-040-L73/B 40  
DLHZO-TE-040-T53/I 40 
DLHZO-TE-040-T71/Q 40 
DLHZO-TE-040-T73/I 40 
DLHZO-TE-040-V11 40 
DLHZO-TE-040-V13 
DLHZO-TE-040-V73 40 
DLKZA-T-160-L71/NPT 
DLKZA-T-160-T71/GK 40 
DLKZOR-LE-160-L71/Q/LQ82SB 41  
DLKZOR-T-140-L31 41 
DLKZOR-T-140-L71 
DLKZOR-T-140-L73 41  
DLKZOR-T-140-T71 41 
DLKZOR-T-140-V71 41 
DLKZOR-T-160-L71 41 
DLKZOR-TE-140-L31 
DLKZOR-TE-140-L71 
DLKZOR-TE-140-L71/FI 41 
DLKZOR-TE-140-L71/I  
DLKZOR-TE-140-L71/Q 41  
DLKZOR-TE-140-L73/I 41  
DLKZOR-TE-140-T71 41 
DLKZOR-TE-140-T73 41  
DLKZOR-TE-140-T73/I 41 
DPZO-A-171-L5 10  
DPZO-A-171-L5/D 
DPZO-A-171-L5/E 
DPZO-A-171-S5 10  
DPZO-A-251-L5 30  
DPZO-A-251-S5 20  
DPZO-A-253-S5 
DPZO-A-271-D5 
DPZO-A-271-L5 
DPZO-A-271-L5/D 30  
DPZO-A-271-L5/E 30 
DPZO-A-271-L5/G 30 
DPZO-A-271-S5 
DPZO-A-271-S5/D  
DPZO-A-271-S5/DE 30  
DPZO-A-271-S5/DG 30 
DPZO-A-271-S5/E 30  
DPZO-A-271-S5/G 
DPZO-A-273-D5  
DPZO-A-273-D5/G 
DPZO-A-273-L5 30  
DPZO-A-273-L5/D 30 
DPZO-A-273-L5/D 30 /WG 
DPZO-A-273-L5/DG 
DPZO-A-273-L5/E 30 
DPZO-A-273-L5/G 30 
DPZO-A-273-S3 
DPZO-A-273-S3/DG 30 
DPZO-A-273-S5 30 
DPZO-A-273-S5/D 
DPZO-A-273-S5/DG 
DPZO-A-273-S5/G 30 
DPZO-A-371-L5/D 30 
DPZO-A-371-L5/DEG/18 30 
DPZO-A-371-L5/E 
DPZO-A-371-S5 30 
DPZO-A-371-S5/D 
DPZO-A-371-S5/EG 30 
DPZO-A-373-D5 
DPZO-A-373-D5/D 30 /WG 
DPZO-A-373-D5/DEG 
DPZO-A-373-L5/DG 30 
DPZO-A-373-L5/G 30  
DPZO-A-373-S5/DG  
DPZO-A-373-S5/G 30 
DPZO-AE-171-L5/E 
DPZO-AE-173-05/DGI  
DPZO-AE-173-L5/GI 10 
DPZO-AE-271-D5/I 30  
DPZO-AE-271-L5 30  
DPZO-AE-271-S5 30 
DPZO-AE-271-S5/D  
DPZO-AE-273-D5 30 
DPZO-AE-273-L5/GI 30 
DPZO-AE-273-S5 30  
DPZO-AE-273-S5 30/WG  
DPZO-AE-371-D5/E  
DPZO-AE-371-S5/D 30 
DPZO-AE-373-L5/D 30 
DPZO-AE-373-L5/GI 30  
DPZO-L-270-L5  
DPZO-L-270-L5/D 40  
DPZO-L-270-L5/DE  
DPZO-L-270-L5/G 40  
DPZO-L-271-L5  
DPZO-L-271-L5/E 40  
DPZO-L-271-S5 
DPZO-L-271-S5/D  
DPZO-L-273-L5 40 
DPZO-L-273-L5/G 
DPZO-L-273-S5 
DPZO-L-273-S5/D 
DPZO-L-273-S5/G 40 
DPZO-L-351-L5/G 40 
DPZO-L-673-D5 20 /WG 
DPZO-LE-170-L5 
DPZO-LE-171-L5 
DPZO-LE-173-L5/I 40 
DPZO-LE-270-L5/D 40/WG  
DPZO-LE-270-L5/DI 40 
DPZO-LE-271-L5 40 
DPZO-LE-271-S5 
DPZO-LE-371-S5 
DPZO-LE-373-L5 40 
DPZO-T-251-L5/E 40 
DPZO-T-271-D3/D  
DPZO-T-271-L5  
DPZO-T-271-S5 
DPZO-T-271-S5/D 
DPZO-T-273-S5/D 
DPZO-TE-171-L5/DI 40
DPZO-TE-173-L5/DI 40  
DPZO-TE-271-D5  
DPZO-TE-271-D5/I  
DPZO-TE-271-L5  
DPZO-TE-271-L5/E 
DPZO-TE-271-L5/I 40 
DPZO-TE-271-S5 
DPZO-TE-271-S5/I 40 
DPZO-TE-273-L5/D 40 
DPZO-TE-273-L5/DI 40  
DPZO-TE-371-S5 40  

联系方式
  • 武汉百士自动化设备有限公司
  •  联 系 人:雷青先生   
  • 公司地址:湖北省武汉市蔡甸区长江路505号长江楚韵1栋2单元1502室
  • 联系电话:027-87680708
  • 联系手机:15307180902
  • 公司传真:
  • 电子邮箱:980227448@qq.com
  • 公司网址:http://whbs-automation.com/